Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
2.
Nat Commun ; 14(1): 5654, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37704629

ABSTRACT

Peptide-based therapeutics have gained attention as promising therapeutic modalities, however, their prevalent drawback is poor circulation half-life in vivo. In this paper, we report the selection of albumin-binding macrocyclic peptides from genetically encoded libraries of peptides modified by perfluoroaryl-cysteine SNAr chemistry, with decafluoro-diphenylsulfone (DFS). Testing of the binding of the selected peptides to albumin identified SICRFFC as the lead sequence. We replaced DFS with isosteric pentafluorophenyl sulfide (PFS) and the PFS-SICRFFCGG exhibited KD = 4-6 µM towards human serum albumin. When injected in mice, the concentration of the PFS-SICRFFCGG in plasma was indistinguishable from the reference peptide, SA-21. More importantly, a conjugate of PFS-SICRFFCGG and peptide apelin-17 analogue (N3-PEG6-NMe17A2) showed retention in circulation similar to SA-21; in contrast, apelin-17 analogue was cleared from the circulation after 2 min. The PFS-SICRFFC is the smallest known peptide macrocycle with a significant affinity for human albumin and substantial in vivo circulation half-life. It is a productive starting point for future development of compact macrocycles with extended half-life in vivo.


Subject(s)
Albumins , Serum Albumin, Human , Humans , Animals , Mice , Apelin , Serum Albumin, Human/genetics , Angiotensin II , Cysteine , Sulfides
3.
Bioorg Med Chem Lett ; 30(4): 126930, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31926786

ABSTRACT

Glycogen synthase kinase-3 plays an essential role in multiple biochemical pathways in the cell, particularly in regards to energy regulation. As such, Glycogen synthase kinase-3 is an attractive target for pharmacological intervention in a variety of disease states, particularly non-insulin dependent diabetes mellitus. However, due to homology with other crucial kinases, such as the cyclin-dependent protein kinase CDC2, developing compounds that are both potent and selective is challenging. A novel series of derivatives of 5-nitro-N2-(2-(pyridine-2ylamino)ethyl)pyridine-2,6-diamine were synthesized and have been shown to potently inhibit glycogen synthase kinase-3 (GSK3). Potency in the low nanomolar range was obtained along with remarkable selectivity. The compounds activate glycogen synthase in insulin receptor-expressing CHO-IR cells and in primary rat hepatocytes, and have acceptable pharmacokinetics and pharmacodynamics to allow for oral dosing. The X-ray co-crystal structure of human GSK3-ß in complex with compound 2 is reported and provides insights into the structural determinants of the series responsible for its potency and selectivity.


Subject(s)
Glycogen Synthase Kinase 3/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Pyridines/chemistry , Animals , Binding Sites , Crystallography, X-Ray , Drug Evaluation, Preclinical , Glycogen Synthase Kinase 3/metabolism , Half-Life , Hepatocytes/cytology , Hepatocytes/metabolism , Humans , Inhibitory Concentration 50 , Molecular Dynamics Simulation , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacokinetics , Protein Structure, Tertiary , Pyridines/metabolism , Pyridines/pharmacokinetics , Rats , Structure-Activity Relationship
4.
J Med Chem ; 61(4): 1382-1414, 2018 02 22.
Article in English | MEDLINE | ID: mdl-28737935

ABSTRACT

Over the past decade, peptide drug discovery has experienced a revival of interest and scientific momentum, as the pharmaceutical industry has come to appreciate the role that peptide therapeutics can play in addressing unmet medical needs and how this class of compounds can be an excellent complement or even preferable alternative to small molecule and biological therapeutics. In this Perspective, we give a concise description of the recent progress in peptide drug discovery in a holistic manner, highlighting enabling technological advances affecting nearly every aspect of this field: from lead discovery, to synthesis and optimization, to peptide drug delivery. An emphasis is placed on describing research efforts to overcome the inherent weaknesses of peptide drugs, in particular their poor pharmacokinetic properties, and how these efforts have been critical to the discovery, design, and subsequent development of novel therapeutics.


Subject(s)
Drug Discovery , Peptides/therapeutic use , Drug Design , Drug Industry , Forecasting , Humans
5.
J Med Chem ; 60(20): 8482-8514, 2017 10 26.
Article in English | MEDLINE | ID: mdl-29016121

ABSTRACT

In an effort to identify new antidiabetic agents, we have discovered a novel family of (5-imidazol-2-yl-4-phenylpyrimidin-2-yl)[2-(2-pyridylamino)ethyl]amine analogues which are inhibitors of human glycogen synthase kinase 3 (GSK3). We developed efficient synthetic routes to explore a wide variety of substitution patterns and convergently access a diverse array of analogues. Compound 1 (CHIR-911, CT-99021, or CHIR-73911) emerged from an exploration of heterocycles at the C-5 position, phenyl groups at C-4, and a variety of differently substituted linker and aminopyridine moieties attached at the C-2 position. These compounds exhibited GSK3 IC50s in the low nanomolar range and excellent selectivity. They activate glycogen synthase in insulin receptor-expressing CHO-IR cells and primary rat hepatocytes. Evaluation of lead compounds 1 and 2 (CHIR-611 or CT-98014) in rodent models of type 2 diabetes revealed that single oral doses lowered hyperglycemia within 60 min, enhanced insulin-stimulated glucose transport, and improved glucose disposal without increasing insulin levels.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Glycogen Synthase Kinases/antagonists & inhibitors , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/pharmacology , Pyrimidines/pharmacology , Animals , CHO Cells , Chromatography, High Pressure Liquid , Cricetulus , Crystallography, X-Ray , Enzyme Inhibitors/metabolism , Humans , Hypoglycemic Agents/metabolism , Mass Spectrometry , Proton Magnetic Resonance Spectroscopy , Pyrimidines/chemistry , Pyrimidines/metabolism , Rats , Structure-Activity Relationship
6.
J Med Chem ; 56(6): 2218-34, 2013 Mar 28.
Article in English | MEDLINE | ID: mdl-23394126

ABSTRACT

A series of novel, highly potent, selective, and ATP-competitive mammalian target of rapamycin (mTOR) inhibitors based on a benzoxazepine scaffold have been identified. Lead optimization resulted in the discovery of inhibitors with low nanomolar activity and greater than 1000-fold selectivity over the closely related PI3K kinases. Compound 28 (XL388) inhibited cellular phosphorylation of mTOR complex 1 (p-p70S6K, pS6, and p-4E-BP1) and mTOR complex 2 (pAKT (S473)) substrates. Furthermore, this compound displayed good pharmacokinetics and oral exposure in multiple species with moderate bioavailability. Oral administration of compound 28 to athymic nude mice implanted with human tumor xenografts afforded significant and dose-dependent antitumor activity.


Subject(s)
Adenosine Triphosphate/metabolism , Binding, Competitive , Drug Discovery , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , Administration, Oral , Animals , Benzoxazines/chemistry , Benzoxazines/metabolism , Benzoxazines/pharmacokinetics , Benzoxazines/pharmacology , Biological Availability , Cell Line, Tumor , Dogs , Female , Humans , Male , Mice , Models, Molecular , Protein Conformation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Rats , Substrate Specificity , TOR Serine-Threonine Kinases/chemistry
7.
Bioorg Med Chem Lett ; 22(24): 7653-8, 2012 Dec 15.
Article in English | MEDLINE | ID: mdl-23127890

ABSTRACT

We report the discovery of a series of 4-aryl-2-aminoalkylpyrimidine derivatives as potent and selective JAK2 inhibitors. High throughput screening of our in-house compound library led to the identification of hit 1, from which optimization resulted in the discovery of highly potent and selective JAK2 inhibitors. Advanced lead 10d demonstrated a significant dose-dependent pharmacodynamic and antitumor effect in a mouse xenograft model. Based upon the desirable profile of 10d (XL019) it was advanced into clinical trials.


Subject(s)
Antineoplastic Agents/pharmacology , Janus Kinase 2/antagonists & inhibitors , Neoplasms, Experimental/drug therapy , Proline/analogs & derivatives , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Crystallography, X-Ray , Dogs , Dose-Response Relationship, Drug , Haplorhini , High-Throughput Screening Assays , Janus Kinase 2/metabolism , Mice , Mice, Nude , Models, Molecular , Molecular Structure , Neoplasms, Experimental/pathology , Proline/administration & dosage , Proline/chemistry , Proline/pharmacology , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Pyrimidines/administration & dosage , Pyrimidines/chemistry , Rats , Structure-Activity Relationship , Xenograft Model Antitumor Assays
8.
Bioorg Med Chem Lett ; 22(17): 5396-404, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22877636

ABSTRACT

With structural guidance, tropane-derived HTS hits were modified to optimize for HSP90 inhibition and a desirable in vivo profile. Through an iterative SAR development process 12i (XL888) was discovered and shown to reduce HSP90 client protein content in PD studies. Furthermore, efficacy experiments performed in a NCI-N87 mouse xenograft model demonstrated tumor regression in some dosing regimens.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Azabicyclo Compounds/chemistry , Azabicyclo Compounds/therapeutic use , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Neoplasms/drug therapy , Phthalic Acids/chemistry , Phthalic Acids/therapeutic use , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Azabicyclo Compounds/pharmacokinetics , Azabicyclo Compounds/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Drug Discovery , HSP90 Heat-Shock Proteins/metabolism , Humans , Mice , Models, Molecular , Neoplasms/metabolism , Neoplasms/pathology , Phthalic Acids/pharmacokinetics , Phthalic Acids/pharmacology
9.
Bioorg Med Chem Lett ; 22(15): 4979-85, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22765894

ABSTRACT

Variously substituted indolin-2-ones were synthesized and evaluated for activity against KDR, Flt-1, FGFR-1 and PDGFR. Extension at the 5-position of the oxindole ring with ethyl piperidine (compound 7i) proved to be the most beneficial for attaining both biochemical and cellular potencies. Further optimization of 7i to balance biochemical and cellular potencies with favorable ADME/ PK properties led to the identification of 8h, a compound with a clean CYP profile, acceptable pharmacokinetic and toxicity profiles, and robust efficacy in multiple xenograft tumor models.


Subject(s)
Drug Design , Indoles/chemical synthesis , Piperidines/chemical synthesis , Protein Kinase Inhibitors/chemical synthesis , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Binding Sites , Cell Line, Tumor , Crystallography, X-Ray , Cytochrome P-450 CYP3A/metabolism , Female , Half-Life , Humans , Indoles/pharmacokinetics , Indoles/therapeutic use , Lung/drug effects , Lung/metabolism , Mice , Neoplasms/drug therapy , Piperidines/pharmacokinetics , Piperidines/therapeutic use , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Protein Structure, Tertiary , Rats , Receptor Protein-Tyrosine Kinases/metabolism , Structure-Activity Relationship , Transplantation, Heterologous
10.
Bioorg Med Chem Lett ; 22(11): 3732-8, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22542012

ABSTRACT

A series of substituted benzofuropyrimidinones with pan-PIM activities and excellent selectivity against a panel of diverse kinases is described. Initial exploration identified aryl benzofuropyrimidinones that were potent, but had cell permeability limitation. Using X-ray crystal structures of the bound PIM-1 complexes with 3, 5m, and 6d, we were able to guide the SAR and identify the alkyl benzofuropyrimidinone (6l) with good PIM potencies, permeability, and oral exposure.


Subject(s)
Drug Design , Furans/chemistry , Protein Kinase Inhibitors/chemical synthesis , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Pyrimidinones/chemistry , Binding Sites , Computer Simulation , Crystallography, X-Ray , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Structure, Tertiary , Proto-Oncogene Proteins c-pim-1/metabolism , Pyrimidinones/chemical synthesis , Pyrimidinones/pharmacology , Structure-Activity Relationship
11.
J Med Chem ; 55(11): 5467-82, 2012 Jun 14.
Article in English | MEDLINE | ID: mdl-22548342

ABSTRACT

The phosphoinositide 3-kinases (PI3Ks) have been linked to an extraordinarily diversified group of cellular functions making these enzymes compelling targets for the treatment of disease. A large body of evidence has linked PI3Kγ to the modulation of autoimmune and inflammatory processes making it an intriguing target for drug discovery. Our high-throughput screening (HTS) campaign revealed two hits that were nominated for further optimization studies. The in vitro activity of the first HTS hit, designated as the sulfonylpiperazine scaffold, was optimized utilizing structure-based design. However, nonoptimal pharmacokinetic properties precluded this series from further studies. An overlay of the X-ray structures of the sulfonylpiperazine scaffold and the second HTS hit within their complexes with PI3Kγ revealed a high degree of overlap. This feature was utilized to design a series of hybrid analogues including advanced leads such as 31 with desirable potency, selectivity, and oral bioavailability.


Subject(s)
Phosphoinositide-3 Kinase Inhibitors , Piperazines/chemical synthesis , Sulfonamides/chemical synthesis , Sulfones/chemical synthesis , Administration, Oral , Animals , Biological Availability , Cell Line , Crystallography, X-Ray , Female , High-Throughput Screening Assays , Humans , Isoenzymes/antagonists & inhibitors , Luminescent Measurements , Mice , Microsomes, Liver/metabolism , Models, Molecular , Molecular Structure , Phosphorylation , Piperazines/pharmacokinetics , Piperazines/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Sulfonamides/pharmacokinetics , Sulfonamides/pharmacology , Sulfones/pharmacokinetics , Sulfones/pharmacology
12.
Bioorg Med Chem Lett ; 22(11): 3727-31, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22560567

ABSTRACT

CDC7 is a serine/threonine kinase that has been shown to be required for the initiation and maintenance of DNA replication. Up-regulation of CDC7 is detected in multiple tumor cell lines, with inhibition of CDC7 resulting in cell cycle arrest. In this paper, we disclose the discovery of a potent and selective CDC7 inhibitor, XL413 (14), which was advanced into Phase 1 clinical trials. Starting from advanced lead 3, described in a preceding communication, we optimized the CDC7 potency and selectivity to demonstrate in vitro CDC7 dependent cell cycle arrest and in vivo tumor growth inhibition in a Colo-205 xenograft model.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyrimidinones/chemistry , Pyrimidinones/pharmacokinetics , Animals , Binding Sites , Cell Cycle Checkpoints/drug effects , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Computer Simulation , Humans , Mice , Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Protein Serine-Threonine Kinases/metabolism , Protein Structure, Tertiary , Pyrimidinones/therapeutic use , Rats , Structure-Activity Relationship , Transplantation, Heterologous , Up-Regulation
13.
Bioorg Med Chem Lett ; 22(8): 2693-7, 2012 Apr 15.
Article in English | MEDLINE | ID: mdl-22450127

ABSTRACT

Activation of the PI3K/Akt/mTOR kinase pathway is frequently associated with human cancer. Selective inhibition of p70S6Kinase, which is the last kinase in the PI3K pathway, is not sufficient for strong tumor growth inhibition and can lead to activation of upstream proteins including Akt through relief of a negative feedback loop. Targeting multiple sites in the PI3K pathway might be beneficial for optimal activity. In this manuscript we report the design of dual Akt/p70S6K inhibitors and the evaluation of the lead compound 11b in vivo, which was eventually advanced into clinical development.


Subject(s)
Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Pyrazoles/chemical synthesis , Pyrazoles/pharmacology , Pyridines/chemical synthesis , Pyridines/pharmacology , Ribosomal Protein S6 Kinases, 70-kDa/antagonists & inhibitors , Animals , Dogs , Enzyme Activation/drug effects , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Haplorhini , Humans , Mice , Microsomes/drug effects , Models, Molecular , Molecular Structure , Phosphatidylinositol 3-Kinases/drug effects , Pyrazoles/chemistry , Pyridines/chemistry
14.
Bioorg Med Chem Lett ; 22(6): 2283-6, 2012 Mar 15.
Article in English | MEDLINE | ID: mdl-22342124

ABSTRACT

The 70-kDa ribosomal protein S6 kinase (p70S6K) is part of the PI3K/AKT/mTOR pathway and has been implicated in cancer. High throughput screening versus p70S6K led to the identification of aminopyrimidine 3a as active inhibitor. Lead optimization of 3a resulted in highly potent, selective, and orally bioavailable pyrazolopyrimidines. In this manuscript we report the structure-activity relationship of this series and pharmacokinetic, pharmacodynamic, and efficacy data of the lead compound 13c.


Subject(s)
Antineoplastic Agents/chemical synthesis , Protein Kinase Inhibitors/chemical synthesis , Pyrazoles/chemical synthesis , Pyrimidines/chemical synthesis , Ribosomal Protein S6 Kinases, 70-kDa/antagonists & inhibitors , Administration, Oral , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Biological Availability , Cell Line, Tumor , Drug Design , High-Throughput Screening Assays , Humans , Inhibitory Concentration 50 , Male , Mice , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacokinetics , Pyrazoles/pharmacology , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Rats , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Signal Transduction , Solubility , Structure-Activity Relationship , Xenograft Model Antitumor Assays
15.
J Med Chem ; 55(3): 1368-81, 2012 Feb 09.
Article in English | MEDLINE | ID: mdl-22214363

ABSTRACT

A series of subtype selective sphingosine 1-phosphate receptor 1 (S1P(1)) antagonists are disclosed. Our high-throughput screening campaign revealed hit 1 for which an increase in potency and mouse oral exposure was achieved with minor modifications to the chemical scaffold. In vivo efficacy revealed that at high doses compounds 12 and 15 inhibited tumor growth. Further optimization of our lead series led to the discovery of proline derivatives 37 (XL541) and 38 which had similar efficacy as our first generation analogues at significantly lower doses. Analogue 37 displayed excellent pharmacokinetics and oral exposure in multiple species.


Subject(s)
Antineoplastic Agents/chemical synthesis , Receptors, Lysosphingolipid/antagonists & inhibitors , Administration, Oral , Amides/chemical synthesis , Amides/pharmacokinetics , Amides/pharmacology , Angiogenesis Inhibitors/chemical synthesis , Angiogenesis Inhibitors/pharmacokinetics , Angiogenesis Inhibitors/pharmacology , Aniline Compounds/chemical synthesis , Aniline Compounds/pharmacokinetics , Aniline Compounds/pharmacology , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Biological Availability , Cell Line , Cell Proliferation/drug effects , Dogs , Haplorhini , High-Throughput Screening Assays , Mice , Neovascularization, Pathologic , Proline/analogs & derivatives , Proline/chemical synthesis , Proline/pharmacokinetics , Proline/pharmacology , Rats , Serine/analogs & derivatives , Serine/chemical synthesis , Serine/pharmacokinetics , Serine/pharmacology , Stereoisomerism , Xenograft Model Antitumor Assays
16.
ACS Med Chem Lett ; 3(5): 416-21, 2012 May 10.
Article in English | MEDLINE | ID: mdl-24900486

ABSTRACT

The ERK/MAP kinase cascade is a key mechanism subject to dysregulation in cancer and is constitutively activated or highly upregulated in many tumor types. Mutations associated with upstream pathway components RAS and Raf occur frequently and contribute to the oncogenic phenotype through activation of MEK and then ERK. Inhibitors of MEK have been shown to effectively block upregulated ERK/MAPK signaling in a range of cancer cell lines and have further demonstrated early evidence of efficacy in the clinic for the treatment of cancer. Guided by structural insight, a strategy aimed at the identification of an optimal diphenylamine-based MEK inhibitor with an improved metabolism and safety profile versus PD-0325901 led to the discovery of development candidate 1-({3,4-difluoro-2-[(2-fluoro-4-iodophenyl)amino]phenyl}carbonyl)-3-[(2S)-piperidin-2-yl]azetidin-3-ol (XL518, GDC-0973) (1). XL518 exhibits robust in vitro and in vivo potency and efficacy in preclinical models with sustained duration of action and is currently in early stage clinical trials.

17.
Diabetes ; 52(3): 588-95, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12606497

ABSTRACT

Insulin resistance plays a central role in the development of type 2 diabetes, but the precise defects in insulin action remain to be elucidated. Glycogen synthase kinase 3 (GSK-3) can negatively regulate several aspects of insulin signaling, and elevated levels of GSK-3 have been reported in skeletal muscle from diabetic rodents and humans. A limited amount of information is available regarding the utility of highly selective inhibitors of GSK-3 for the modification of insulin action under conditions of insulin resistance. In the present investigation, we describe novel substituted aminopyrimidine derivatives that inhibit human GSK-3 potently (K(i) < 10 nmol/l) with at least 500-fold selectivity against 20 other protein kinases. These low molecular weight compounds activated glycogen synthase at approximately 100 nmol/l in cultured CHO cells transfected with the insulin receptor and in primary hepatocytes isolated from Sprague-Dawley rats, and at 500 nmol/l in isolated type 1 skeletal muscle of both lean Zucker and ZDF rats. It is interesting that these GSK-3 inhibitors enhanced insulin-stimulated glucose transport in type 1 skeletal muscle from the insulin-resistant ZDF rats but not from insulin-sensitive lean Zucker rats. Single oral or subcutaneous doses of the inhibitors (30-48 mg/kg) rapidly lowered blood glucose levels and improved glucose disposal after oral or intravenous glucose challenges in ZDF rats and db/db mice, without causing hypoglycemia or markedly elevating insulin. Collectively, our results suggest that these selective GSK-3 inhibitors may be useful as acute-acting therapeutics for the treatment of the insulin resistance of type 2 diabetes.


Subject(s)
Enzyme Inhibitors/pharmacology , Glucose/metabolism , Glycogen Synthase Kinase 3/antagonists & inhibitors , Insulin/pharmacology , Aminopyridines/pharmacology , Animals , Biological Transport/drug effects , CHO Cells , Cricetinae , Diabetes Mellitus/drug therapy , Drug Synergism , Enzyme Activation/drug effects , Enzyme Inhibitors/therapeutic use , Female , Gene Expression , Glycogen Synthase/metabolism , Hepatocytes/metabolism , Humans , Insulin Resistance , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Pyridines/pharmacology , Pyrimidines/pharmacology , Rats , Rats, Sprague-Dawley , Rats, Zucker , Receptor, Insulin/genetics , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...